SSP Exercise 3

To be handed in by 4 p.m. Thursday 2nd February

In *d* dimensions there are $(1/2\pi)^d$ different spatial quantum states, of wave function $\psi(r)$, per unit length/area/volume of real space *r*, per unit length/area/volume of *k* space.

Using the 3D free electron Fermi gas model show that the expression for the Fermi energy in terms of the free electron density, n, is given by

$$\varepsilon_F = \frac{\hbar^2}{2m} \left(3\pi^2 n\right)^{\frac{2}{3}},$$

where *m* is the electron mass.

Calculate ε_{F} for:

(i) Copper, which has face centred cubic structure with lattice spacin	g <i>a</i> =0.361
nm and for which one atom contributes one free electron.	[6]
15 0	

(ii) A **two dimensional** solid containing 3×10^{15} m⁻² free electrons. [6]

(iii) A **one dimensional** conductor whose unit cells each contribute one free electron and are 0.8 nm long. [6]

[7]